
Scientific Programming
Practical 10

Introduction

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it

Tutoring

Dear QCB students.

a tutoring service has been set up for you, it will be held by Gabriele Masina (gabriele.masina@studenti.unitn.it) on:

- Mondays 16.30-18.30

- Thursdays 11.30-13.30.

Starting from Monday, October 26th included.

These sessions will take place via Zoom, the details for the connection follow:
https://unitn.zoom.us/j/86903894307?pwd=bGVqV1ExcDRPb1hqWWpPbkFXZlh1QT09

Meeting ID: 869 0389 4307

Passcode: 076411

Make the most of this additional chance to learn python!

https://unitn.zoom.us/j/86903894307?pwd=bGVqV1ExcDRPb1hqWWpPbkFXZlh1QT09

Ex 6

Example (win:4):

4 3 8 1 21 7

4

avg

Ex 6

Example (win:4):

4

avg

4

4 3 8 1 21 7

Ex 6

Example (win:4):

4

avg

4 3.5

4 3 8 1 21 7

Ex 6

Example (win:4):

4

avg

4 3.5

4 3 8 1 21 7

4.5

5 8 16 17 191 26

Cumulative sum:

Ex 6

Example (win:4):

4

avg

4 3.5

4 3 8 1 21 7

4.5

5 8 16 17 191 26

Cumulative sum:

5 8 16 17 191 26

i=3
Clever bit: when we move to
the right with the window we
need to disregard (i.e. subtract)
the blue elements one after the
other

Ex 6

Example (win:4):

4

avg

4 3.5

4 3 8 1 21 7

4.5

5 8 16 17 191 26

Cumulative sum:

5 8 16 17 191 26

i=3
Clever bit: when we move to
the right with the window we
need to disregard (i.e. subtract)
the blue elements one after the
other
Let’s subtract them after the
starting point (i=3)

5 8 16 16 141 18

subtract

Ex 6

Example (win:4):

4

avg

4 3.5

4 3 8 1 21 7

4.5

5 8 16 17 191 26

Cumulative sum:

5 8 16 17 191 26

i=3

5 8 16 16 141 18

Clever bit: when we move to
the right with the window we
need to disregard (i.e. subtract)
the blue elements one after the
other
Let’s subtract them after the
starting point (i=3)
Finally, let’s compute the mean
value (i.e. divide by 4)

4 4 3.5 4.5

subtract

divide by 4

Ex 6

Example:

4

avg

4 3.5

4 3 8 1 21 7

4.5

5 8 16 17 191 26

Cumulative sum:

5 8 16 17 191 26

i=4

5 8 16 16 141 18

4 4 3.5 4.5

subtract

divide by 4

Ex 6

F F
F T

F F
T T

Axis on 3D arrays

T F
F T

np.ndarray[M, R, C]

matrix (can be : for all)
row (can be : for all)

column (can be : for all)

F F
F T

F F
T T

Axis on 3D arrays

T F
F T

axis = 0

F F
F T

F F
T T

Axis on 3D arrays

T F
F T

axis = 0

axis = 1

F F
F T

F F
T T

Axis on 3D arrays

T F
F T

axis = 0

axis = 1

axis = 2

Biopython

The Biopython Project is an international
association of developers of freely available
Python tools for computational molecular
biology.

The goal of Biopython is to make it as easy as
possible to use Python for bioinformatics by
creating high-quality, reusable modules and
classes.

https://biopython.org/wiki/Documentation

Biopython

Biopython:

1. Provides tools to parse several common bioinformatics formats (e.g.
FASTA, FASTQ, BLAST, PDB, Clustalw, Genbank,..).

2. Provides an interface towards biological data repositories (e.g. NCBI,
Expasy, Swiss-Prot,..)

3. Provides an interface towards some bioinformatic tools (e.g. clustalw,
MUSCLE, BLAST,…)

4. Implements some tools like pairwise alignment and data structures to
deal with biological data.

More material at:

http://biopython.org/DIST/docs/tutorial/Tutorial.pdf

http://biopython.org/DIST/docs/tutorial/Tutorial.pdf

Seq objects
Seq objects are more powerful than strings to
deal with sequences and are defined in the
module Bio.Seq.

They are immutable objects. The mutable
version is MutableSeq.

Seq objects

Seq objects behave like strings.

In the latest release the description
of the Alphabet associated to the
sequence has been dropped
therefore there is no consistency
check...

Seq objects

Seq objects behave like strings.

We can loop through the elements of
the sequence and perform slicing...

Seq objects

Biopython provides several
methods working on Seq
objects
(remember Seq are immutable!)

General methods (return int and Seq objects):
Seq.count(s) : counts the number of times s appears in the sequence;
Seq.upper() : makes the sequence of the object Seq in upper case
Seq.lower() : makes the sequence of the object Seq in lower case

Only for DNA/RNA (return Seq objects):

Seq.complement() to complement the sequence
Seq.reverse_complement() to reverse complement the sequence.
Seq.transcribe() transcribes the DNA into mRNA
Seq.back_transcribe() back transcribes mRNA into DNA
Seq.translate() translates mRNA or DNA into proteins

Other functions are in SeqUtils
 (ex. use from Bio.SeqUtils import molecular_weight):

SeqUtils.GC(Seq) computes GC content (considers S --> C or G…)
SeqUtils.molecular_weight(Seq) computes the molecular weight of the seq
….

Check out: http://biopython.org/DIST/docs/api/

http://biopython.org/DIST/docs/api/

Seq objects

Biopython provides several
methods working on Seq
objects
(remember Seq are immutable!)

Check out: http://biopython.org/DIST/docs/api/

http://biopython.org/DIST/docs/api/

Seq objects

Biopython provides several
methods working on Seq
objects
(remember Seq are immutable!)

Sequence annotations

The SeqRecord object is used to
store annotations associated to
sequences. They might provide:

Sequence annotations

https://www.ncbi.nlm.nih.gov

Sequence annotations

ID: gi|45478711|ref|NC_005816.1|

Name: gi|45478711|ref|NC_005816.1|

Description: gi|45478711|ref|NC_005816.1| Yersinia

pestis biovar Microtus str. 91001 plasmid pPCP1,

complete sequence

Number of features: 0

Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGAT

CCAGG...CTG', SingleLetterAlphabet())

Sequence [first 30 bases]:

TGTAACGAACGGTGCAATAGTGATCCACAC

The id:

gi|45478711|ref|NC_005816.1|

The description:

gi|45478711|ref|NC_005816.1| Yersinia pestis biovar

Microtus str. 91001 plasmid pPCP1, complete sequence

The record is a: <class 'Bio.SeqRecord.SeqRecord'>

from Bio import SeqIO

record =

SeqIO.read("file_samples/NC_005816.fna",

"fasta")

print(record)

print("")

print("Sequence [first 30 bases]:")

print(record.seq[0:30])

print("")

print("The id:")

print(record.id)

print("")

print("The description:")

print(record.description)

print("")
print("The record is a: ", type(record))

SeqIO.parse

The Bio.SeqIO module aims
to provide a simple way to
work with several different
sequence file formats

Formats available:
https://biopython.org/wiki/SeqIO

SeqIO

SeqIO.parse
returns an iterator,
we can get the next
element with
next(iterator)

Do you remember
all the “pain” to
parse the header,
concatenate the
sequence etc… ?

SeqIO

With
SimpleFastaParser...

from Bio.SeqIO.FastaIO import SimpleFastaParser

SeqIO

The module Bio.SeqIO also has three
different ways to allow random access to
elements:

Examples are given on the notes of the practical sheet

SeqIO.write

The module Bio.SeqIO
provides also a way to
write sequence records
to files in various formats
(like fasta, fastq,
genbank, pfam…)

Examples are given on the notes of the practical sheet

Multiple sequence alignment

Multiple Sequence
Alignments are a
collection of multiple
sequences which have
been aligned together –
usually with the insertion of
gap characters, and
addition of leading or
trailing gaps – such that all
the sequence strings have
the same length.

In Biopython, each row is a SeqRecord object and alignments are
stored in an object MultipleSeqAlignment

Parsing MSAs:
AlignIO

The function Bio.AlignIO.parse()
returns an iterator of
MultipleSeqAlignment objects that
is a collection of SeqRecords.

Each SeqRecord contains several
information like the ID, Name,
Description, Number of features,
start, end and sequence.

In the frequent case that we have to
deal with a single multiple
alignment we will have to use the
Bio.AlignIO.read() function.

Writing and converting MSAs

Biopython provides a function
Bio.AlignIO.write() to write
alignments to file

and

Bio.AlignIO.convert() to
convert one format into the other
(provided that all information
needed for the second format is
available)

Ex.

my_alignments = [align1, align2, align3]

N = AlignIO.write(my_alignments, "file_samples/my_malign.phy", "phylip")

Manipulating/writing MSA

It is possible to slice alignments using the
[] operator applied on a SeqRecord.

Think about it as a matrix

align[0,0] is Y
align[2,1] is I
align[:,0] is YFFCLTDTMILIGCLL

align[:,0:3] gets first 3 rows (SeqRecords)
YLFFILDK-N...
FILCILPERK…
FILCVLPDK…

align[0:3,0:3] first 3 cols of first 3 rows (SeqRecords):
YLF
FIL
FIL

Pairwise alignment

Biopython has its own module to make
pairwise alignment. It provides two
algorithms: Smith-Waterman for local
alignment and Needleman-Wunsch
for global alignment. These methods
are implemented in two Biopython
functions of the Bio.pairwise2
module:

pairwise2.align.globalxx()
pairwise2.align.localxx()

Example:

alignments = pairwise2.align.globalxx("ACCGTTATATAGGCCA", "ACGTACTAGTATAGGCCA")

for i in range(len(alignments)):

 print(alignments[i])

('ACCGT--TA-TATAGGCCA', 'A-CGTACTAGTATAGGCCA', 15.0, 0, 19)

('ACCGT--TA-TATAGGCCA', 'AC-GTACTAGTATAGGCCA', 15.0, 0, 19)

https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

Pairwise alignment

OPTIONS FOR MATCHES/MISMATCHES
AND GAP OPENS/EXTENSIONS

pairwise2.align.globalxx
pairwise2.align.globalmx
pairwise2.align.globalms
pairwise2.align.globalmd
pairwise2.align.globalxd
pairwise2.align.globalxs
pairwise2.align.localxx
pairwise2.align.localmx
pairwise2.align.localms
pairwise2.align.localmd
pairwise2.align.localxd
pairwise2.align.localxs

The first letter is the score for a match
the second letter is the penalty for a gap

Pairwise alignment

Example. Let’s perform the alignment of the two

sequences “ACCGTTATATAGGCCA” and

“ACGTACTAGTATAGGCCA”

http://biopython.org

https://biopython.org/docs/1.78/api/py-modindex.html

Check:

Seq
SeqRecord
MultipleSeqAlignment

Installing biopython

http://qcbsciprolab2020.readthedocs.io/en/latest/practical10.html

