Scientific Programming
Practical 3

Introduction

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it

my first_list = [1,2,3]
print("first:" , my_first_list)

Lists my_second list = [1,2,3,1,3] #elements can appear several times
print("second: ", my_second_list)

fruits = ["apple”, "pear", "peach", "strawberry", "cherry"] #elements can be strings
print("fruits:", fruits)

an_empty_list = []
Ordered collections of print("empty:" , an_empty list)

(homogeneous) objects another_empty list = list()
print("another empty:", another_empty 1list)

Mutable objects a_list_containing other lists = [[1,2], [3,4,5,6]1]1 #elements can be other lists
print("list of lists:", a_list_containing_other_lists)

Peflned using the [] and my final_example = [my_ first_list, a_list_containing_other_lists]
items are separated print("a list of lists of lists:", my_fTinal_example)

by commas

first: L. 25 3]

second: [1, 2, 3, 1, 3]

fruits: ['apple', 'pear', 'peach', 'strawberry', ‘cherry']
empty: []

another empty: []

Listof 1istsT LA, 21, [3: 4 5, 6]]

a: Hist-of: Vistsof-lists: [[3; 2 315 [[Y5 213 [3; 47 53 6111

Lists

Operators and functions

NOTE: as in strings,
list indexing starts from O!

The whole object
must be there!

Lists are mutable
SO how we can
change values!

Result| Operator Meaning
bool =, I= Check if two lists are equal or different
int len(list) Return the length of the list
list list + list Concatenate two lists (returns a new list)
list list * int Replicate the list (returns a new list)
list list[int:int] | Extract a sub-list
Result| Operator Meaning
bool obj in list Check if an element is present in a list
Result| Operator Meaning
obj list[int] Read/write an element at a specified

index

Lists

Operators and functions
NOTE: as in strings,

list indexing starts from O!

in slicing list[S:E]
S is included
E is excluded

A
B

1, 2, 3]
1, 2, 3, 1, 2]

print("A is a ", type(A))

print(A, " has length: ", len(A))
print("A[e]: ", A[©], " A[1]:", A[1], " A[-1]:", A[-1])

print(B, " has length: ", len(B))
print("Is A equal to B?", A == B)

C=A+*[1, 2]

print(C)

print("Is C equal to B?", B == C) #same content

print("Is C the same object as B?", B is C) #different objects
D =1[1, 2, 3]*8

print(D)

E = D[12:18] #slicing
print(E)
print("Is A*2 equal to E?", A*2 == E)

A is a <class 'list'>

[1,.:2: 3]. ‘has:Vength: 3

AlBl: A AlLls 2 Al-=1): 3

[1; 2; 3,1, 2} has length: 5
Is A equal to B? False

[1; 2; 3, 1; 2]

Is C equal to B? True

Is C the same object as B? False
ix, 2: 334,02, 3, 1, 2, 8,1, 2, 3, %, 2, 3 4,9 3 L 2 3 8,2 3]
I, 2; 3,.1,2, 3]

Is A*2 equal to E? True

Lists

Operators and functions

NOTE: as in strings,
list indexing starts from O!

IN operator: the whole element must be
therel

Lists are mutable objects so now we
can change values!

A=1[1, 2, 3, 4, 5, 6]
B =[1, 3, 5]
print("A:", A)
print("B:", B)

print("Is B in A?", B in A)
print("A\'s ID:", id(A))

A[5] = [1,3,5] #we can add elements
print(A)

print("A\'s ID:", id(A))

print("A has length:", len(A))
print("Is now B in A?", B in A)

A% [l 250354555 6]

B: [1; 3;:5]

Is B in A? False

A's ID: 140419415368200
13, 2; 35 9,5, 11, 3, 5l]
A's ID: 140419415368200

A has length: 6

Is now B in A? True

Lists

ERROR: do not exceed boundaries with indexing!

AS 12 3.4;5, 6]
print("A has length:", len(A))

print("First element:", A[O])
print("7th-element: ", A[6])

A has length: 6
First element: 1

IndexError Traceback (most recent call last)
<ipython-input-5-699e5f04cae®> in <module>()
3

4 print("First element:", A[8])
----> 5 print("7th-element: ", A[6])

IndexError: list index out of range

Lists

Slicing can cope with indexes out of range:

A=1][1, 2, 3, 4, 5, 6]
print("A has length:", len(A))

print("First element:", A[0O])
print("last element: ", A[-1])

print("3rd to 10th: ", A[2:10])

print("8th to 11th:", A[7:11])

A has length: 6

First element: 1

last element: 6

3rd to 10th: [3, 4, 5, 6]
8th to 11th: []

Lists

Methods Return| Method Meaning
None list.append(obj) Add a new element at the end of
the list
None list.extend(list) Add several new elements at the
end of the list
None list.insert(int,obj)| Add a new element at some given
position
None list.remove(obj) Remove the first occurrence of an
element
None list.reverse() Invert the order of the elements
can specify None list.sort() Sort the elements
reverse = True int list.count(obj) Count the occurrences of an
element

Note that lists are mutable objects and therefore virtually all the previous methods (except count) do not have an output

value, but they modify the list
D

#A numeric list

A= 15002y 31
print(A)
. print("A has id:", id(A))
LIS‘tS A.append(72) #appends one and only one object
print(A)

print("A has id:", id(A))
A.extend([1, 5, 124, 99]) #adds all these objects, one after the other.
print(A)
Methods A.reverse() #NOTE: NO RETURN VALUE!!!
print(A)
A.sort()
print(A)
print("Min value: ", A[®]) # In this simple case, could have used min(A)
print("Max value: ", A[-1]) #In this simple case, could have used max(A)
print("Number 1 appears:", A.count(l), " times")
print("while number 837: ", A.count(837))

print("\nDone with numbers, let's go strings...\n")
#A string list

(1, 2, 3] fruits = ["apple", "banana", "pineapple", "cherry","pear", "almond", "orange"]
A has id: 139986676327752 #lLet's get a reverse lexicographic order:
1, 2, 3, 72] print(fruits)

A has id: 139986676327752

15 23 1 3:'5, 424;.95] fruits.sort()

[99; 124, 5, 1, 72, 3; 2, 1] fruits.reverse() # equivalent to: fruits.sort(reverse=True)

11, 1,72, 3, 5, 72, 99, 124] prl(tt(fru1ts)

Min value: 1 fruits.remove("banana")

Max value: 124 print(fruits)

Number 1 appears: 2 times fruits.insert(5, "wild apple") #put wild apple after apple.

While number 837: © print(fruits)

) . print("\nSorted fruits:")

Done with numbers, let's go strings... fruits.sort() # does not return anything. Modifies list!

print(fruits)

['apple', 'banana', 'pineapple', 'cherry', 'pear', ‘'almond', 'orange']
['pineapple’, 'pear', 'orange', ‘cherry', 'banana’', ‘apple', 'almond']
['pineapple’', 'pear', 'orange', ‘cherry', ‘'apple’, 'almond']

['pineapple’, 'pear', 'orange', 'cherry’', 'apple', 'wild apple', 'almond’]

Sorted fruits:
['almond', 'apple', 'cherry', ‘'orange', 'pear', ‘pineapple', 'wild apple’']

Return| Method Meaning
None list.append(obj) Add a new element at the end of
the list
o . None list.extend(list) Add several new elements at the
L rrlrrl rrl k end of the list
I Sts) a CO O n I Sta e None list.insert(int,obj)| Add a new element at some given
position
None list.remove(obj) Remove the first occurrence of an
Methods slement
None list.reverse() Invert the order of the elements
None list.sort() Sort the elements
lists are mutable objects int list.count(obj) (iount :he occurrences of an
elemen

and therefore virtually all
the previous methods
(except count) do not have
an output value:

A= ["A%, "B", "c"]
print("A:", A)

A new = A.append("D")
print("A:", A)
print("A new:", A_new)

#A _new is None. We cannot apply methods to it...
print(A _new is None)
print("A new has " , A new.count("D"), " Ds")

Kz 'A% ‘B e

A: A%, P, e, D]
A new: None

True

AttributeError Traceback (most recent call last)
<ipython-input-8-114913bcel6b> in <module>

11 #A new is None. We cannot apply methods to it...

12 print(A _new is None)
---> 13 print("A new has " , A_new.count("D"), " Ds")

AttributeError: 'NoneType' object has no attribute 'count'

Lists

Some important things on lists A=[1, 2, 3]

A.extend([4, 5])
print(A)

B:=:[1, 2. 3]
B.append([4,5])
print(B)

1. append is different from extend

i1, 2, 3; 4, 5]
. . . (1, 2, 3, {4, 51]
2. to remove an object it must exist

A= 1[1,2,3]
A.remove(2)
print(A)

A.remove(7)

[1, 3]

ValueError Traceback (most recent call last)
<ipython-input-9-bdf156eeld4f6> in <module>()

The 'corfect way Wpuld be to. SR SR 13

test if 7 is present in A (we will 3 print(A)

do that when we know the =P AR remove (7]

syntax of if statements) ValueError: list.remove(x): x not in list
D

Lists

Some important things on lists

3. a list is sortable if all its elements are (i.e. it is homogeneous)

A= [4p3: 1071 2]
print(A)
A.sort()
print(A)
A.append("banana”)
print(A)
A.sort()
print(A)

TypeError Traceback (most recent call last)
<ipython-input-1-91b77adb823f> in <module>

5 A.append("banana")

6 print(A)
----> 7 A.sort()

8 print(A)

TypeError: '<' not supported between instances of 'str' and 'int’

A = ["hi", "there"]

B=A

print("A:", A)

print("B:", B)
A.extend(["from", "python"])

L]
LIStS print("A now: ", A)

print("B now: ", B)
print("\n---- copy example -------)

REMEMBER: #lLet's make a distinct copy of A.
C = A[:] #all the elements of A have been copied in C
PEINE(SE2 S E)
A[3] = "java"

Lists are MUTABLE objects... Print("A now:", A)

print("C now:", C)

... hence they hold references print("\n---- be careful though ------- "

#Watch out though that...
to objects rather than objects. 1= l[)ﬁ[\:]A]

print("D:", D)

prinkCrEL " E)

D[0][®] = "hello"
print("D now:", D)
print("E now", E)

A: ['hi', 'there']
B: ['hi', 'there']
A now: ['hi', 'there', 'from', ‘python']
B now: ['hi', 'there', 'from', 'python']

---- copy example -------

C: ['hi', 'there', 'from',6 ‘'python']

A now: ['hi',6 'there' K 'from', 'java'l]

C now: ['hi', 'there' K 'from', 'python']

---- be careful though -------
D: [['hi', 'there', 'from',k 'java'l], ['hi', 'there', 'from',k 'java']]

E: [['hi', 'there', 'from', 'java'], ['hi', 'there', 'from',6 'java']]
D now: [['hello', 'there', 'from', 'java'l], ['hello', 'there',K ‘'from', 'java']]
E now [['hello', '"there',K 'from', 'java'l, ['hello', ‘'there', ‘'from', 'java'l]l

The split method. String = List

Syntax:

LIST = str.split(str)

1

split at characters

string to be split

text = "This is my sentence. How many words have I written?"
words = text.split(' ')
print(text)

print(words)
print("\nThe sentence contains ", len(words), "words")

This is my sentence. How many words have I written?
['This', 'is', 'my', 'sentence.', 'How', 'many', 'words', 'have',

The sentence contains 10 words

lIl'

'written?']

chain_a = """SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
H HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
T h e S p | |t m et h O d IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG

EPHHELPPGSTKRALPNNT" " *

lines = chain_a.split('\n")
print("0Original sequence:")
print(chain_a, "\n") #some spacing to keep things clear
print("line by line:")

Example Recall the protein seen in the previous practical: # write the following and you will appreciate loops! :-)
print("1lst line:" ,lines[0])
print("2nd line:" ,lines[1])

chain_a = “"“SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM GELE(* 300 Tifie:® Linesi2l)
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV print("4th line:" ,lines[3])
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR print("5th line:" ,lines[4])

HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT =

IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG EPHHELPPGSTKRALPNNT™" print("\nSplit the 1st line in correspondence of FRL:\n",lines[0].split("FRL"))

s : Original sequence:
how can we split it into several lines? SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
EPHHELPPGSTKRALPNNT

line by line:

1st line: SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
2nd line: FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
3rd line: RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
4th line: HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
5th line: IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
6th line: EPHHELPPGSTKRALPNNT

Split the 1st line in correspondence of FRL:
[' SSSVPSQKTYQGSYG', 'GFLHSGTAKSVTCTYSPALNKM']

chain_a = """SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
H HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
T h e S p | |t m et h O d IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG

EPHHELPPGSTKRALPNNT" " *

lines = chain_a.split('\n")
print("0Original sequence:")
print(chain_a, "\n") #some spacing to keep things clear
print("line by line:")

Example Recall the protein seen in the previous practical: # write the following and you will appreciate loops! :-)
print("1lst line:" ,lines[0])
print("2nd line:" ,lines[1])

chain_a = “"“SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM GELE(* 300 Tifie:® Linesi2l)
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV print("4th line:" ,lines[3])
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR print("5th line:" ,lines[4])

HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT =

IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG EPHHELPPGSTKRALPNNT™" print("\nSplit the 1st line in correspondence of FRL:\n",lines[0].split("FRL"))

s : Original sequence:
how can we split it into several lines? SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
EPHHELPPGSTKRALPNNT

line by line:

1st line: SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
2nd line: FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
3rd line: RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
4th line: HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
5th line: IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
6th line: EPHHELPPGSTKRALPNNT

where is FRL gone? - Split the 1st line in correspondence of FRL:
['SSSVPSQKTYQGSYG', 'GFLHSGTAKSVTCTYSPALNKM']

The join method. List = String

Example Given the list [Oct', '5", '2018', '15:30, let's combine all its elements in a string joining the elements with a dash ("-") and print them. Let's finally
join them with a tab ("\t") and print them.

vals = ['Oct’; "Sth', '2018'; "15:30"]

Syntax: print(vals)
myStr = "-".join(vals)
str.join(list) print("\n" + myStr)

myStr = "\t".join(vals)
print("\n" + myStr)
. [i0ct’ ;. "Sth’;: "2018%: "15:38%)
elements to join
Oct-5th-2018-15:30

string used to join Oct 5th 2018 15:30

them

first_tuple = (1,2,3)
Tu ples print(first_tuple)

second_tuple = (1,) #this contains one element only, but we need the comma!
var = (1) #This is not a tuple!!!
print(second_tuple, " type:", type(second_tuple))
print(var, " type:", type(var))
empty tuple = () #fairly useless
Tuples are the IMMUTABLE I Ceanty tile)

. . third_tuple = ("January", 1 ,2007) #heterogeneous info
version of lists print(third_tuple)

(ordered sequence of objects) days = (third_tuple, ("February",62,1998), ("March",62,61978),("June" 12,1978))
print(days, "\n")

#Remember tuples are immutable objects...

Defined with () and items are print("Days has id: ", id(days))
days = ("Mon","Tue",K "Wed","Thu","Fri", "Sat", "Sun")
separated by commas #...hence reassignment creates a new object
print("Days now has id: ", id(days))
Note: the 1-element tuple (1; 2, 3)
(1,) type: <class 'tuple’'>
needs a comma! 1 type: <class 'int'>
0

('January', 1, 2007)
(('January', 1, 2007), ('February', 2, 1998), ('March', 2, 1978), ('June', 12, 1978))

Days has id: 140419415813880
Days now has id: 140419416147240

Tuples

Tuples are the IMMUTABLE
version of lists

(ordered sequence of objects)

Why? Tuples can be used as keys of dictionary,

whereas lists cannot

a [1, 2, [1,2,3]] # a list

b (1, 2, [1,2,3]) # a tuple
print("a:", a)

print("b:", b)

print("")

print(“afe]:", a[e], "b[e]:", b[O])
print("af2]:", a[2], "b[2]:", b[2])

a: [1, 2, [1, 2, 3]]
b: (1, 2, [1, 2, 3])

al[0]: 1 b[O]: 1
alt2]: 1, 2, 3] bl21:s [1,. 2, 3]

Tuples a=[1, 2, [1,2,:” ;a list

bi= (1 25 131,25 a tuple
print(“a:", a)
print("b:", b)
print("")
print("a[e]:", a[e], "b[e]:", b[e])
print(*a[2]:", a[2], "b[2]:", b[2])
Tuples are the IMMUTABLE print("")
. . a[1] = [7,8,9]
version of lists print(a)
b[1] = [7,8,9]

(ordered sequence of objects) print(b)
|

. az 12y [1; 25 311
... and do not support item b: (1, 2, [1, 2, 3])

assignment afe]: 1 b[o]: 1
al21: [1, 2, 3] bi2}: [1, 2, 3]

(1, (7, 8, 91, [1, 2, 3]]

TypeError Traceback (most recent call last)
<ipython-input-2-549ff@d2c315> in <module>

9 al[1] = [7,8,9]

10 print(a)
---> 11 b[1] = [7,8,9]

12 print(b)

13

TypeError: 'tuple' object does not support item assignment

Tuples

Functions

working as in lists...

Result| Operator Meaning

bool =, I= Check if two tuples are equal or different
int len(tuple) Return the length of the tuple

tuple | tuple + tuple | Concatenate two tuples (returns a new

tuple)

tuple | tuple * int Replicate the tuple (returns a tuple)
tuple | tuplel[int] Read an element of the tuple
tuple | tuplel[int:int]| Extract a sub-tuple

practicall = ("Wednesday", "23/09/2020")
practical2 = ("Monday", "28/09/2020")

practical3 ("Wednesday", "30/09/2020")

TU ples #A tuple containing 3 tuples

lectures = (practicall, practical2, practical3)
. #0ne tuple only
Functions mergedLectures = practicall + practical2 + practical3

print("The first three lectures:\n", lectures, "\n")
print("mergedLectures:\n", mergedLectures)

#This returns the whole tuple

print("1lst lecture was on: ", lectures[6], "\n")

#2 elements from the same tuple

print("1lst lecture was on ", mergedLectures[®], ", ", mergedLectures[1], "\n")
Return type is tuple!

print("3rd lecture was on: ", lectures[2])

#2 elements from the same tuple returned in tuple

print("3rd lecture was on ", mergedLectures[4:], "\n")

The first three lectures:
(('Wednesday', '23/09/2020'), ('Monday', '28/09/2020'), ('Wednesday', '30/09/2020'))

mergedLectures:

('Wednesday', '23/09/2020', 'Monday', '28/09/2020', 'Wednesday', '30/09/2020')
1st lecture was on: ('Wednesday', '23/09/2020')
1st lecture was on Wednesday , 23/09/2020

3rd lecture was on: ('Wednesday', '30/09/2020')
3rd lecture was on ('Wednesday', '30/09/2020')

Tuples

Methods

working as in lists...

Return

Method

Meaning

int

tuple.count (obj)

Count the occurrences of an
element

int

tuple.index(obj)

Return the index of the first
occurrence of an object

practicall = ("Wednesday", "23/09/2020")
T I practical2 = ("Monday", "28/09/2020")
up es practical3 = ("wednesday", "30/09/2020")
Methods mergedLectures = practicall + practical2 + practical3 #0ne tuple only

print(mergedLectures.count("Wednesday"), " lectures were on Wednesday")
print(mergedLectures.count("Monday"), " lecture was on Monday")
print(mergedLectures.count("Friday"), " lectures was on Friday")

print("Index:", practical2.index("Monday"))
#You cannot look for an element that does not exist
print("Index:", practical2.index("Wednesday"))

2 lectures were on Wednesday
1 lecture was on Monday
0 lectures was on Friday

Index: ©
ValueError Traceback (most recent call last)
<ipython-input-19-20063b595bbc> in <module>

10

11 print("Index:", practical2.index("Monday"))
---> 12 print("Index:", practical2.index("Wednesday"))
13

ValueError: tuple.index(x): x not in tuple

Questions ?

https://qcbsciprolab2020.readthedocs.io/en/latest/practical3.html

Exercises

Go quickly

through the

text and do S';::i:;sois a text |
several lines that does not say anything."""

the exercises

1. Given the following text string:

a. print it; b) print how many lines, words and characters it contains. Finally, c)sort the words
at the el‘ld alphabetically and print the first and the last in lexicographic order.

Show/Hide Solution

2. The variant calling format (VCF) is a format to represent structural variants of genomes (i.e.
SNPs, insertions, deletions) . Each line of this format represents a variant, every piece of
information within a line is separated by a tab (\t in python). The first 5 fields of this format
report the chromosome (chr), the position (pos), the name of the variant (name), the reference
allele (REF) and the alternative allele (ALT). Assuming to have a variable VCF defined containing
the following three lines (representing three SNPs):

VCF = """MDCOOOOO1.124\\t7112\\tFB_AFFY_0000024\\tG\\tA
MDCOOEOO2.328\\t941\\tFB_AFFY_0000144\\tC\\tT
MDCOOOOO4. 272\\t2015\\tFB_AFFY_0000222\\tG\\tA"""

1. Store these three variants as a list of lists, where each one of the fields is kept separate
(e.g. the list should be similar to:

[[chri,posi, namel, refi, altl], [chr2, pos2, name2, ref2, alt2], ...] where all the elements

are as specified in the string VCF (note that "..." means that the list is not complete).

2. Print each variant changing its format in: "name|chr|pos|REF/ALT".

4 1 >

