Scientific Programming
Practical 5

Introduction

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it

More on loops...

Statement

Statement

Statement

Statement

Newlines

Conditional statement

if - elif - else

Loop statement

for - while

Ternary operator

Example: The discount rate applied to a purchase depends on the amount of the sale. Create a

L variable discount setting its value to O if the variable amount is lower than 100 euros, to 10% if it is
In some cases it is handy to

higher.

be able to initialize a variable

depending on the value of [1]: amount = 110
discount = ©

nother one.
ANSNEEONS if amount >100:
discount = 0.1

else:

discount = © # not necessary

print("Total amount:", amount, "discount:", discount)

Total amount: 110 discount: 0.1

Ternary operator

In some cases it is handy to

Syntax:

be able to initialize a variable
depending on the value of variable = value if condition else other _value

another one.

amount = 110
discount = 0.1 if amount > 100 else ©
print("Total amount:", amount, "discount:", discount)

.. . Total amount: 110 discount: 0.1
NOTE: this is considered

non-pythonic!

Continue - Break

Sometimes it is useful to skip an
entire iteration of a loop or end the
loop before its supposed end.

This can be achieved with two
different statements:

continue and break.

Continue

for el in collection:
#statement
#statement2
Within a for or while loop, continue
makes the interpreter skip that = .
5 . if condition:
iteration and move to the next. .
continue

#statement_n

while condition:
#statement1
#update condition
if other_condition:
continue

#statement_n

Continue

Example: Print all the odd numbers from 1 to 20.

Within a for or while loop, continue SR VI
makes the interpreter skip that 22 Jeng esatdon =1
} . for i in range(21):
iteration and move to the next. if i % 2 == 1:
print(i, end = " ")
print("")

#2. Skipping if remainder == @ 1in for
for i in range(21):
if i% 2 == 0:
continue
print(i, end = " ")

57911 13 15 17 19

13
135791113 15 17 19

Continue

Continue can be used also within while
loops but we need to be careful and
remember to update the value of the
variable before reaching the continue
statement or we will get stuck in
never-ending loops.

Example: Print all the odd numbers from 1 to 20.

#Wrong code:

i=0
while i < 21:
if:1 %2 = 9:
continue
print(i, end = " ")

i=1+1#NEVER EXECUTED IF 1 % 2 == Q!!!!

Continue

Continue can be used also within while
loops but we need to be careful and
remember to update the value of the
variable before reaching the continue
statement or we will get stuck in
never-ending loops.

Example: Print all the odd numbers from 1 to 20.

i=-1
while i< 20: #1 is incremented in the loop, so 20!!!
I =ay #the variable 1is updated no matter what
ifi% 2 == 0:
continue
print(i, end = " ")

135791113 15 17 19

Break

Within a for or while loop,
break makes the interpreter exit
the loop and continue with the
sequential execution.
Sometimes it is useful to get out
of the loop if to complete our
task we do not need to get to
the end of the loop.

for el in collection:
#statement
#statement2

if condition:
break

#statement_n

#other_sequential

while condition:
#statement1
#update condition
if other_condition:
break

#statement_n
#other_sequential

Example: Pick a random number from 1 and 50 and count how many times it takes to randomly
choose number 27. Limit the number of random picks to 40 (i.e. if more than 40 picks have been
done and 27 has not been found exit anyway with a message).

Break

Within a for or while loop,
break makes the interpreter exit
the loop and continue with the
sequential execution.
Sometimes it is useful to get out
of the loop if to complete our
task we do not need to get to
the end of the loop.

import random

iterations = 1

picks = []

while iterations <= 40:
pick = random.randint(1,50)
picks.append(pick)

if pick == 27:
break
iterations += 1 #equal to: iterations = iterations + 1

if iterations == 41:
print(“Sorry number 27 was never found!")
else:
print("27 found in ", iterations, "iterations")

print(picks)

27 found in 9 iterations
[39;:7, 30;: 23; 39, :30;:5; 22;: 27]

Example: Pick a random number from 1 and 50 and count how many times it takes to randomly
choose number 27. Limit the number of random picks to 40 (i.e. if more than 40 picks have been
done and 27 has not been found exit anyway with a message).

Break

import random

iterations = 1

picks = []

while iterations <= 40:
pick = random.randint(1,50)
picks.append(pick)

if pick == 27:
break
iterations += 1 #equal to: iterations = iterations + 1

if iterations == 41:
print(“Sorry number 27 was never found!")
else:
print("27 found in ", iterations, "iterations")

print(picks)

27 found in 9 iterations
[39;:7,; 305 2¥; 39 :36;:5;/22;; 27]

Using breaks or flags....

import random
found = False # This is called flag
iterations = 1
picks = []
while iterations <= 40 and found == False: #the flag is used to exit
pick = random.randint(1,50)
picks.append(pick)
At picki== 27:
found = True #update the flag, will exit at next iteration
iterations += 1

if iterations == 41 and not found:
print("Sorry number 27 was never found!")
else:
print("27 found in ", iterations -1, "iterations")

print(picks)

27 found in 4 iterations
[10, 20, 40, 27]

List comprehension

List comprehension is a quick way to

create a list new_list = [some_function (x) for x in start_list if condition]
) o) or if condition
The resulting list is normally obtained optional

by applying a function or a method

to the elements of another list that
remains unchanged. new_list = [x.some_method() for x in start_list if condition]

List comprehension

Example: Given a list of strings ["hi", "there”, "from", "python"] create a list with the length of the corresponding element (i.e. the one with the same index).

elems = ["hi", "there", "from", "python"]
newList = [len(x) for x in elems]

for i in range(0,len(elems)):
print(elems[i], " has length ", newList[i])

hi has length 2
there has length 5
from has length 4
python has length 6

List comprehension

Example: Given the list: [*Hotel", "Icon”," Bus","Train", "Hotel", "Eye", "Rain", "Elephant”] create a list with all the first letters.

myList = ["Hotel", "Icon"," Bus","Train", "Hotel", "Eye", "Rain", "Elephant"]
initials = [x[0] for x in myList]

print(myList)
print(initials)
print("".join(initials))

['Hotel', 'Icon', ' Bus', 'Train', 'Hotel', 'Eye', 'Rain', 'Elephant']
[IHI, III') l’ ITI' IHI' IEI, IRI' IEI]
HI THERE

Dictionaries

A dictionary is a map between one

object, the key and another object, the
value.

first_dict = {"one" : 1, "two": 2, "three" : 3, "four" : 4}
Dictionaries are mutable objects and PEERE(SSrRtss et aleh)
contain sequences of mappings key —> empty_dict = dict()
object but there is not specific print("Empty:",empty_dict)
ordering among them.
second_dict = {1 : "one", 2 : "two", "three" :3 } #BAD IDEA BUT POSSIBLE!!!
print(second_dict)
Dictionaries are defined using the curly
braces {key1 : value1, key2 : value2} third_dict = dict(zip(["one","two","three","four"],[1,2,3,4]))

and : to separate keys from values. print(third dict)
print(first_dict == third_dict)

First: {'one': 1, 'two': 2, 'three': 3, 'four': 4}
Empty: {}

{1: 'one', 2: 'two', 'three': 3}

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

True

Dictionaries

a = (1,2,3) #a,b are tuples: hence immutable
b = (1,3,5)
. . my dict = {a : 6, b : 9
Keys must be immutable objects p¥?nt(my_d1{ct) :
c =[1,2,3] #c.d are lists: hence mutable
d =[1,3,5]

dict2. = {c 2 6, d = 9}
print(dict2)

(L5 35 5)% 9 Ay 2y 3) 6}

TypeError Traceback (most recent call last)
<ipython-input-49-0fe98c7f5acd> in <module>()

8d=1[1,3,5]

9

---> 10 dict2 = {c : 6, d : 9}
11 print(dict2)

TypeError: unhashable type: 'list'

D i Cti O n a ri e S Result| Operator Meaning
bool obj in dict Return True if a key is present in the
dictionary
int len(dict) Return the number of elements in the
dictionary
obj dict[obj] Read the value associate with a key
Functions on dictionaries dict[obj] = obj | Add or modify the value associated R/W
with a key mutable!

myDict = {"one" : 1, "two" : 2, "twentyfive" : 25}

print(myDict)

myDict["ten"] = 10

myDict["twenty"] = 20

print(myDict)

myDict["ten"] = "10-again"

print(myDict)

print("The dictionary has ", len(myDict), " elements")
print("The value of \"ten\" is:", myDict["ten"])
print("The value of \"two\" is:", myDict["two"])

print("Is \"twentyfive\" in dictionary?"“, "twentyfive" in myDict)
print("Is \"seven\" in dictionary?", "seven" in myDict)

{'one': 1, "two': 2, 'twentyfive': 25}

{'one': 1, 'two': 2, 'twentyfive': 25, 'ten': 10, 'twenty': 20}

{'one': 1, 'two': 2, 'twentyfive': 25, 'ten': 'l@-again’', 'twenty': 20}
The dictionary has 5 elements

The value of "ten" is: 10-again

The value of "two" is: 2

Is "twentyfive" in dictionary? True

Is "seven" in dictionary? False

D | Ctl O n a rl eS Return | Method Meaning
list dict.keys() Returns the list of the keys that
are present in the dictionary
list dict.values() Returns the list of the values that
are present in the dictionary
Methods of dictionaries list of | dict.items() Returns the list of pairs (key,
tuples value) that are present in the
dictionary

ERRATUM: dict.keys() returnsa dict keys object not a list. To cast it to list, we need to call
list(dict.keys()) .
NOTE: the same applies to dictvalues)
D= (k1% « 1, Fid® 2 , N : 3}
print("keys:" , D.keys(), "values:", D.values())

print("")
print("keys:", list(D.keys()), "values:", list(D.values()))

keys: dict keys(['kl', 'k2', 'k3']) values: dict values([1, 2, 3])
keys: ['kl', 'k2', 'k3'] values: [1, 2, 3]

Dictionaries

Accessing a value through the key of a
dictionary requires that the pair key-value
one searches for is present in the
dictionary. If the searched key is not
present the interpreter crashes out
throwing a KeyError

myDict = {"one" :

1,

print(myDict["one"])
print(myDict["seven"])

" tWO "

5 2y

"three"

: 3}

KeyError

<ipython-input-5-a@5b31e54a02> in <module>
2

3 print(myDict["one"])

----> 4 print(myDict["seven"])

KeyError:

'seven’

Traceback (most recent call last)

Dictionaries

Explicitly test presence of key Use get
myDict = {"one" : 1, "two" : 2, "three" : 3} myDict = {"one" : 1, "two" : 2, "three" : 3}
search_keys = ["one", "seven"] search keys = ["one", "seven"]
for s in search keys: for s in search keys:
if s in myDict:) print("key:", s, "value:", myDict.get(s, "not found"))
print("key:", s, "value:", myDict[s])
else: key: one value: 1
print("key", s, "not found in dictionary") key: seven value: not found

key: one value: 1
key seven not found in dictionary

Return | Method Meaning

list dict.keys () Returns the list of the keys that
are present in the dictionary

D | Cti O n a rl eS list dict.values() Returns the list of the values that

are present in the dictionary

list of | dict.items() Returns the list of pairs (key,
tuples value) that are present in the
dictionary
Use the in-line help...
:u A = dict()
23 a.
Qiclear ‘ def clear (self) x
@ copy) o
§ fromkeys dict() -> new empty dictionary
@ get - dict(mapping) -> new dictionary initialized from a
Q items mapping object's
® keys (key, value) pairs
@ pop dict(iterable) -> new dictionary initialized as if via: |
@ popitem d={} o
Q@ setdefault fork, viniterable:
@ update N dlk]:v .« g TR 1] .
@ values dict(**kwargs) -> new dictionary initialized with
%: class the name=value pairs

Dictionaries

Example Given the protein sequence below, store in
a dictionary all the aminoacids present and count
how many times they appear. Finally print out the
stats (e.g. how many amino-acids are present, the
most frequent, the least frequent and the frequency
of all of them in alphabetical order).

R e S D e
MGNAAAAKKGSEQESVKEFLA ’ x
VKHMETGNHYAMKILDKQkwv/A 15 present 23 times
MEYVPGGEMFSHLRRIGRFSE C 15 present 2 times
IQVTDFGFAKRVKGRTWTLCG D is present 18 times
ADQPIQIYEKIVSGKVRFPSHE is present 27 times
TOWIAIYQRKVEAPFIPKFKS | 5 present 25 times

is present 22 times

is present 9 times

is present 21 times

is present 34 times

is present 32 times

is present 8 times

is present 17 times

is present 14 times

is present 14 times

is present 15 times

is present 16 times

is present 14 times

is present 20 times

is present 6 times

is present 14 times

Amino C has the lowest freq. (2)
Amino K has the highest freq. (34)

<XECAHWVNVIOTVZ2TZrA-=IQ

protein = """MGNAAAAKKGSEQESVKEFLAKAKEDFLKKWENPAQNTAHLDQFERIKTLGTGSFGRVML
VKHMETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMV
MEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGY
IQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFF
ADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWFAT
TDWIAIYQRKVEAPFIPKFKGPGDTSNFDDYEEEEIRVSINEKCGKEFSEF"""

protein = protein.replace("\n","")
print(protein)
amino_acids = dict()

for a in protein:
if a in amino acids:
amino_acids[a] = amino_acids[a] + 1 # amino acids[a] += 1
else:
amino_acids[a] = 1

num_aminos = len(amino_acids)

print("The number of amino-acids present is ", num_aminos)
#let's get all aminoacids

#and sort them alphabetically

a_keys = list(amino_acids.keys())

a_keys.sort()

Another example of dictionaries
mostF = {"frequency" : -1, "aminoacid" : "-"}
leastF = {"frequency" : len(protein), "aminoacid" : "-"}

for a in a keys:
freq = amino_acids[al
if(mostF["frequency"] < freq):
mostF["frequency"] = freq
mostF["aminoacid"] = a

if(leastF["frequency"] > freq):
leastF["frequency"] = freq
leastF["aminoacid"] = a

print(a, " is present", freq, "times")

print("Amino", leastF["aminoacid"], "has the lowest freq. (",leastF["frequency"],")")
print("Amino", mostF["aminoacid"], "has the highest freq. (",mostF["frequency"],")")

http://qgcbsciprolab2020.readthedocs.io/en/latest/practicals.html

Exercises

1. Given the following two lists of integers: [1, 13, 22, 7, 43, 81, 77, 12, 15,21, 84,100] and
[44,32,7,100, 81, 13, 1, 21, 71]:

1. Sort the two lists

2. Create a third list as intersection of the two lists (i.e. an element is in the intersection if it is
present in both lists).

3. Print the three lists.

Show/Hide Solution

2. The sequence below is the Sars-Cov2 ORF1a polyprotein. 1. Count and print how many
aminoacids it is composed of and 2. put in a dictionary all the indexes of the occurrences of the
following four aminoacids: TTTL, GFAV, KMLL (i.e.the key of the dictionary is the sequence and
the value is the list of all positions at which the four-mers appear).

ORFla = """MESLVPGFNEKTHVQLSLPVLQVRDVLVRGFGDSVEEVLSEARQHLKDGTCGLVEVEKGVLPQLEQPYVF
IKRSDARTAPHGHVMVELVAELEGIQYGRSGETLGVLVPHVGEIPVAYRKVLLRKNGNKGAGGHSYGADL
KSFDLGDELGTDPYEDFQENWNTKHSSGVTRELMRELNGGAYTRYVDNNFCGPDGYPLECIKDLLARAGK
ASCTLSEQLDFIDTKRGVYCCREHEHEIAWYTERSEKSYELQTPFEIKLAKKFDTFNGECPNFVFPLNST
IKTIQPRVEKKKLDGFMGRIRSVYPVASPNECNQMCLSTLMKCDHCGETSWQTGDFVKATCEFCGTENLT
KEGATTCGYLPQNAVVKIYCPACHNSEVGPEHSLAEYHNESGLKTILRKGGRTIAFGGCVFSYVGCHNKC
AYWVPRASANIGCNHTGVVGEGSEGLNDNLLEILQKEKVNINIVGDFKLNEEIAIILASFSASTSAFVET
VKGLDYKAFKQIVESCGNFKVTKGKAKKGAWNIGEQKSILSPLYAFASEAARVVRSIFSRTLETAQNSVR
VLQKAAITILDGISQYSLRLIDAMMFTSDLATNNLVVMAYITGGVVQLTSQWLTNIFGTVYEKLKPVLDW
LEEKFKEGVEFLRDGWEIVKFISTCACEIVGGQIVTCAKEIKESVQTFFKLVNKFLALCADSITIIGGAKL
KALNLGETFVTHSKGLYRKCVKSREETGLLMPLKAPKEITFLEGETLPTEVLTEEVVLKTGDLQPLEQPT
SEAVEAPLVGTPVCINGLMLLEIKDTEKYCALAPNMMVTNNTFTLKGGAPTKVTFGDDTVIEVQGYKSVN
ITFELDERIDKVLNEKCSAYTVELGTEVNEFACVVADAVIKTLQPVSELLTPLGIDLDEWSMATYYLFDE
SGEFKLASHMYCSFYPPDEDEEEGDCEEEEFEPSTQYEYGTEDDYQGKPLEFGATSAALQPEEEQEEDWL
DDDSQQTVGQQDGSEDNQTTTIQTIVEVQPQLEMELTPVVQTIEVNSFSGYLKLTDNVYIKNADIVEEAK
KVKPTVVVNAANVYLKHGGGVAGALNKATNNAMQVESDDY IATNGPLKVGGSCVLSGHNLAKHCLHVVGP
NVNKGEDIQLLKSAYENFNQHEVLLAPLLSAGIFGADPIHSLRVCVDTVRTNVYLAVFDKNLYDKLVSSF
LEMKSEKQVEQKIAEIPKEEVKPFITESKPSVEQRKQDDKKIKACVEEVTTTLEETKFLTENLLLYIDIN
GNLHPDSATLVSDIDITFLKKDAPYIVGDVVQEGVLTAVVIPTKKAGGTTEMLAKALRKVPTDNYITTYP
GQGLNGYTVEEAKTVLKKCKSAFYILPSIISNEKQEILGTVSWNLREMLAHAEETRKLMPVCVETKAIVS
TIQRKYKGIKIQEGVVDYGARFYFYTSKTTVASLINTLNDLNETLVTMPLGYVTHGLNLEEAARYMRSLK
VPATVSVSSPDAVTAYNGYLTSSSKTPEEHFIETISLAGSYKDWSYSGQSTQLGIEFLKRGDKSVYYTSN
PTTFHLDGEVITFDNLKTLLSLREVRTIKVFTTVDNINLHTQVVDMSMTYGQQFGPTYLDGADVTKIKPH
NSHEGKTFYVLPNDDTLRVEAFEYYHTTDPSFLGRYMSALNHTKKWKYPQVNGLTSIKWADNNCYLATAL
LTLQQIELKFNPPALQDAYYRARAGEAANFCALILAYCNKTVGELGDVRETMSYLFQHANLDSCKRVLNV
VCKTCGQQQTTLKGVEAVMYMGTLSYEQFKKGVQIPCTCGKQATKYLVQQESPFVMMSAPPAQYELKHGT
FTCASEYTGNYQCGHYKHITSKETLYCIDGALLTKSSEYKGPITDVFYKENSYTTTIKPVTYKLDGVVCT

