Scientific Programming
Practical 6

Introduction

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it

List comprehension: Ex.1

Exercises

1. Given the following two lists of integers: [1, 13, 22, 7, 43, 81, 77, 12, 15,21, 84,100] and
[44,32,7, 100, 81, 13, 1, 21, 71]:

1. Sort the two lists

2. Create a third list as intersection of the two lists (i.e. an element is in the intersection if it is
present in both lists).

3. Print the three lists.

"""First solution, prints multiple times repeated elements in L1"""

L1 = [1, 13, 22, 7, 43, 81, 77, 12, 15,21, 84,100]
L2 = [44,32,7, 100, 81, 13, 1, 21, 71]

Ll.sort()

L2.sort()

intersection = [x for x in L1 if x in L2]
print("L1: ST

print("L2: e L2)

print("inters:", intersection)

L1 =1[1, 9, 1, 7, 44, 9, 9, 9, 81, 77, 12, 15,21, 84,100]

L2 = [44, 32, 21, 7, 160, 81, 13, 9, 1, 21, 71]
pPrint(®\n---=----essocem s o =)

L1l.sort()

L2.sort()

intersection = [x for x in L1 if x in L2]

print("L1: L 5 5]

print("L2: al2)

print("inters:", intersection)

print("\n\n ------ Second solution --------)

"""Second solution, does not print multiple times repeated elements in L1"""
print("L1: L)

print("L2: LX)

intersection2 = [L1[x] for x in range(len(L1)) if L1[x] in L2 and L1[x] not in LI1[x+1:]]

print("inters:

L1
k2
inters:

", intersection2)

12, 13, 15, 21, 22, 43, 77, 81, 84, 100]
13, 21, 32, 44, 71, 81, 100]
13, 21, 81, 1e0]

inters:

77999 9, 12, 15;.°21,.44, 77, 81, 84,.160]
9, 13, 21; 21, 32, 44, 71, 81, 1608]
7,9, 9,9, 9, 21, 44, 81, 160]

solution --------

7;.19,.9,.'9, 9, 12; 35,.2%,.'44, 77, 81, 84, 1006}
9,:13,.:2Y, 21, 32, 44,71, 8L, 166]

9, 21, 44, 81, 100]

List comprehension: Ex.1

Exercises

1. Given the following two lists of integers: [1, 13, 22, 7, 43, 81, 77, 12, 15,21, 84,100] and
[44,32,7, 100, 81, 13, 1, 21, 71]:

1. Sort the two lists

2. Create a third list as intersection of the two lists (i.e. an element is in the intersection if it is
present in both lists).

3. Print the three lists.

o
1 NS

1 appears down the
list. We will process
it later!

"""First solution, prints multiple times repeated elements in L1"""

L1 = [1, 13, 22, 7, 43, 81, 77, 12, 15,21, 84,100]
L2 = [44,32,7, 100, 81, 13, 1, 21, 71]

Ll.sort()

L2.sort()

intersection = [x for x in L1 if x in L2]
print("L1: ST

print("L2: e L2)

print("inters:", intersection)

L1 = [1, 9, 1, 7, 44, 9, 9, 9, 81, 77, 12, 15,21, 84,100]
L2 = [44, 32, 21, 7, 100, 81, 13, 9, 1, 21, 71]
pPrint(®\n---=----essocem s o =)

L1l.sort()

L2.sort()

intersection = [x for x in L1 if x in L2]

print("L1: L 5 5]

print("L2: al2)

print("inters:", intersection)

print("\n\n ------ Second solution --------)

"""Second solution, does not print multiple times repeated elements in L1"""
print("L1: L)

print("L2: LX)

intersection2 = [L1[x] for x in range(len(L1)) if L1[x] in L2 and L1[x] not in LI1[x+1:]]

print("inters:", intersection2)

123 [1, 7, 12, 13, 15, 21, 22, 43, 77, 81, 84, 100]
L2: [1, 7, 13, 21, 32, 44, 71, 81, 100]
inters: [1, 7, 13; 21,81, 100]

L Ay Ay 75999 9y 12; :153.72L,.44, 771, 81; '84;.160]
L2: I1; 7, 9, 13;:2Y; 21, 32; 44,71, 81, 108]
inters: [1, 1, 7, 9,9, 9, 9, 21, 44, 81, 160]

------ Second solution --------
EEE ia, 1, 7;9,.9,'9, 9, 12; 15,.:2%,.44, 77, 81, ‘84, 180}
£2: 1, 7, 9,:13,:21, 21, 32, 44,71, 8L, 168]
inters: [1, 7, 9, 21, 44, 81, 100]

List comprehension: Ex.1

Exercises

1. Given the following two lists of integers: [1, 13, 22, 7, 43, 81, 77, 12, 15,21, 84,100] and
[44,32,7, 100, 81, 13, 1, 21, 71]:

1. Sort the two lists

2. Create a third list as intersection of the two lists (i.e. an element is in the intersection if it is
present in both lists).

3. Print the three lists.

o
B 1 [

1 appears down the
list. We will process
it later!

"""First solution, prints multiple times repeated elements in L1"""

L1 = [1, 13, 22, 7, 43, 81, 77, 12, 15,21, 84,100]
L2 = [44,32,7, 100, 81, 13, 1, 21, 71]

Ll.sort()

L2.sort()

intersection = [x for x in L1 if x in L2]
print("L1: ST

print("L2: e L2)

print("inters:", intersection)

L1 = [1, 9, 1, 7, 44, 9, 9, 9, 81, 77, 12, 15,21, 84,100]
L2 = [44, 32, 21, 7, 100, 81, 13, 9, 1, 21, 71]
pPrint(®\n---=----essocem s o =)

L1l.sort()

L2.sort()

intersection = [x for x in L1 if x in L2]

print("L1: L 5 5]

print("L2: al2)

print("inters:", intersection)

print("\n\n ------ Second solution --------)

"""Second solution, does not print multiple times repeated elements in L1"""
print("L1: L)

print("L2: LX)

intersection2 = [L1[x] for x in range(len(L1)) if L1[x] in L2 and L1[x] not in LI1[x+1:]]

print("inters:", intersection2)

123 [1, 7, 12, 13, 15, 21, 22, 43, 77, 81, 84, 100]
L2: [1, 7, 13, 21, 32, 44, 71, 81, 100]
inters: [1, 7, 13; 21,81, 100]

L Ay Ay 75999 9y 12; :153.72L,.44, 771, 81; '84;.160]
L2: I1; 7, 9, 13;:2Y; 21, 32; 44,71, 81, 108]
inters: [1, 1, 7, 9,9, 9, 9, 21, 44, 81, 160]

------ Second solution --------
EEE ia, 1, 7;9,.9,'9, 9, 12; 15,.:2%,.44, 77, 81, ‘84, 180}
£2: 1, 7, 9,:13,:21, 21, 32, 44,71, 8L, 168]
inters: [1, 7, 9, 21, 44, 81, 100]

"""First solution, prints multiple times repeated elements in L1"""

=1,
L2

[T, 13; 227,43, 8%, 71; 12,°15;21, 84,168]
[44,32,7, 100, 81, 13, 1, 21, 71]

List comprehension: Ex.1 &

intersection = [x for x in L1 if x in L2]

print("L1: L)
print("L2: L)
print("inters:", intersection)

L1 =1[1, 9, 1, 7, 44, 9, 9, 9, 81, 77, 12, 15,21, 84,100]
- L2 = [44, 32, 21, 7, 160, 81, 13, 9, 1, 21, 71]
Exercises
pPrint(®\n---=----essocem s o =)
1. Given the following two lists of integers: [1, 13, 22, 7, 43, 81, 77, 12, 15,21, 84,100] and ::; SOF‘E: ;
.sor
[44,327,100,81,13, 1,21, 71: intersection = [x for x in L1 if x in L2]
. print("L1: L B)]
1. Sort the two lists print("L2: " 12)
2. Create a third list as intersection of the two lists (i.e. an element is in the intersection if it is print("inters:", intersection)
present in both lists). : ;
; 2 print("\n\n ------ Second solution --------)
3. Print the three lists. "unSecond solution, does not print multiple times repeated elements in L1"""
print("L1: L)
print("L2: L2

intersection2 = [L1[x] for x in range(len(L1)) if L1[x] in L2 and L1[x] not in LI1[x+1:]]
print("inters:", intersection2)

123 [1, 7, 12, 13, 15, 21, 22, 43, 77, 81, 84, 100]
1 e L: (17,13, 21, 32, a4, 71, 81, 106]
inters: [1, 7, 13; 21,81, 100]
L Ay Ay 75999 9y 12; :153.72L,.44, 771, 81; '84;.160]
ok Check L2: I1; 7, 9, 13;:2Y; 21, 32; 44,71, 81, 108]

inters: [1, 1, 7, 9, 9, 9, 9, 21, 44, 81, 100]
ERERENEY intersection

------ Second solution --------
EEE ia, 1, 7;9,.9,'9, 9, 12; 15,.:2%,.44, 77, 81, ‘84, 180}
£2: 1, 7, 9,:13,:21, 21, 32, 44,71, 8L, 168]
inters: [1, 7, 9, 21, 44, 81, 100]

Functions

A function is a block of code that The basic definition of a function is:
has a name and that performs a

task.
def function name(input) :

, #code implementing the functi
A function can be thought of as a box co S T | AT

(even as a black box: e.g. print())
that gets an input and returns an
output (or None).

return return_value

1. Reduce code duplication: put in functions parts of code that are needed several
times in the whole program so that you don’t need to repeat the same code over and
over again;

2. Decompose a complex task: make the code easier to write and understand by
splitting the whole program into several easier functions

Example: compute the sum of the square root of the values in lists X, Y, Z.

Functions

. import math
import math

X=]1:5 4 ¢ 7.,2.1] Kmibl 2 8 81 1.2, 2
Y=o, 6 7,1 21 Y= 13,9, 7. 1, 2l
zZ=19,9, 4, 7] Z=1[9,9, 4, 7]
sum x = 0 # This function does not return anything
sumy = 0 def print sum sqrt(vals):
sum z = 0 tmp = O
duplicated code for el in vals:

for el in X: ‘////// P tmp += math.sqrt(el)

sum_x += math.sqrt(el) print(vals, "sum sqrt:", tmp)
for el in v: print sum sqrt(X)

sum_y += math.sqrt(el) print_sum sqrt(Y)
Yor al/dn 7t print_sum sqrt(Z)

sum_z += math.sqrt(el)

S s : [1, 5, 4, 4, 7, 2, 1] sum sqrt: 12.296032850937475
p;;:tw' ,,:ﬁm—zq:t;,,' ::m—") [9, 4, 7, 1, 2] sum sqrt: 10.059964873437686
akake dQlopr SalB e [9, 9, 4, 7] sum sqrt: 10.64575131106459
[1, 5, 4, 4, 7, 2, 1] sum sqrt: 12.296032850937475
[9, 4, 7, 1, 2] sum sqrt: 10.059964873437686
[9, 9, 4, 7] sum sqrt: 10.64575131106459

Example: compute the sum of the square root of the values in lists X, Y, Z.

Functions

import math

Another function returning the sum

import math

SR b X 1, % & 4720 M
’ v ’ ’ Y=[9, 4, 7, 1, 2]
Zz=1[9, 9, 4, 7] Z=19, 9, 4, 71
sum_Xx 5 g # This function returns the sum
sumy = def sum sqrt(vals):
sum z = 0 =

. tmp = ©
/dupllcated code for el in vals:

for el in X: tmp += math.sqrt(el)

sum_x += math.sqrt(el)
return tmp
for el in Y:
sum y +

math.sqrt(el) X
y
z

sum_sqrt(X)
sum_sqrt(Y)
sum_sqrt(z)

for el in Z:
sum_z += math.sqrt(el)
print(X, "sum sqrt:", x)

print(X, "sum sqrt:", sum Xx) print(Y, "sum sqrt:", y)
print(Y, "sum sqrt:", sum_ y) print(zZ, "sum sqrt:", z)
print(zZ, "sum sqrt:", sum z) # we have the sums as numbers, can use them
= B print("Sum of all: ", x + y + z)
[1, 5, 4, 4, 7, 2, 1] sum sqrt: 12.296032850937475 (1, 5, 4, 4, 7, 2, 1] sum_sqrt: 12.296032850937475
[9, 4, 7, 1, 2] sum sqrt: 10.059964873437686 (9, 4, 7, 1, 2] sum_sqrt: 10.059964873437686
[9, 9, 4, 7] sum_sqrt: 10.64575131106459 [9, 9, 4, 7] sum sqrt: 10.64575131106459

Sum of all: 33.00174903543975

Functions

def get even placed(myList):

Example: Let's write a function that, given "u"returns the even placed elements of myList"""

a list of elements, prints only the ret = [myList[i] for i in range(len(myList)) if i % 2 == 0]
even-placed ones without returning print(ret)

anythlng L1 [nhiu' "there", "from","python",“!"]

L2 = list(range(13))
print(®L1:" ;. LY)
prant(12:% E2)

print("even L1:")
get even placed(L1)
print("even L2:")
get _even placed(L2)

L1: ['hi', ‘there*', 'from’, ‘'python', '!']
L2: §9; :I1,:2,:3, 4, 5, 6; 7,8,5, 16, 11, 12]

- . . Lo even L1:
This is a polymorphic function (i.e. it [*hi', 'from', '!']
works on several data types, provided that S 15 o
we can iterate through them)! [e, 2, 4, 6, 8, 10, 12]

Namespaces and scope

Namespaces are mappings from names
to objects, or in other words places (i.e.
dictionaries) where names are associated
to objects.

1. **Local**: the innermost that contains local names (inside a function or a class);

Namespaces can be considered as the , : .
2. **Enclosing**: the scope of the enclosing function,

context. it does not contain local nor global names (nested functions) ;

. , 3. **Global**: contains the global names;
According to Python’s reference a scope

is a textual region of a Python program, o i e By b‘)‘ﬂt S hes
i i . e.g. print, if, while, for,...
where a namespace is directly accessible

LEGB order for finding variable

var = 'global’
var2 = 'global’

Namespace and scope det ny_10):

var = 'enclosing’

var2 = 'enclosing’

def my inner f():

var = 'local’
) . —) print("\t\t\tvar:", var)

1. **Local**: the innermost that contains local names (inside a function or a class); print(“\t\t\tvarz: " var2)
print("\t\tcalling my inner f:")
my inner f()
print("\tvar", var)
print("\tvar2", var2)

2. **Enclosing**: the scope of the enclosing function,
it does not contain local nor global names (nested functions) ;

3. **Global**: contains the global names;

4. **Built-in**: contains all built in names
(e.g. print, if, while, for,...) print("var:", var)
print("var2:", var2)

print("\tcalling my f:")
my_f()

print("var:", var)
print("var2:", var2)

var: global
var2: global
calling my f:
calling my inner f:
var: local
var2: enclosing
var enclosing
var2 enclosing
var: global
var2: global

Functions

Example: define a function that gets Q;s‘[j,},zlz\jn

a list of integers and returns its sum.
def my sum(myList):

ret = 0
for el in mylList:
ret += el
Importantly enough, a function return ret
needs to be defined (i.e. its code
has to be written) BEFORE it can
dcialyjoellised: NameError Traceback (most recent call last)
<ipython-input-7-585169a2991a> in <module>()
A =[152,3]
----> 2 my_sum(A)
3
4 def my sum(myList):
5 ret =0

NameError: name 'my sum' is not defined

Argument passing

Things to remember

1. Passing an argument is actually assigning an object to a local variable name;
2. Assigning an object to a variable name within a function does not affect the caller;
3. Changing a mutable object variable name within a function affects the caller

1. Passing an argument is actually assigning an object to a local variable name;
2. Assigning an object to a variable name within a function does not affect the caller;
3. Changing a mutable object variable name within a function affects the caller

Argument passing

"""Assigning the argument does not affect the caller"""

def my_f(x):
x = "local value" #local
print("Local: ", x)

x = "global value" #global
my f(x)

print("Global:", x)

my f(x)

Local: 1local value
Global: global value
Local: 1local value

1. Passing an argument is actually assigning an object to a local variable name;
2. Assigning an object to a variable name within a function does not affect the caller;
3. Changing a mutable object variable name within a function affects the caller

Argument passing

"*"Changing a mutable affects the caller"""

def my_f(myList):
myList[1] = “"new valuel"
myList[3] = "new value2"
print("Local: ", myList)

myList = ["old value"]*4
print("Global:", myList)

my f(myList)

print("Global now: ", myList)

Global: ['old value', 'old value’, 'old value', 'old value'l]
Local: ['old value', 'new valuel', 'old value', 'new value2']
Global now: ['old value', 'new valuel', 'old value', 'new value2']

Example: Let's write a function that, given a list of integers, returns the number of elements, the
maximum and minimum.

Functions

"""easy! this changes the original list!!!"""
def get info(myList):
"svreturns len of myList, min and max value
(assumes elements are integers) but it would work with str"""

myList.sort()
return len(myList), myList[0], myList[-1] #return type is a tuple

We need to make a A =[7, 1, 125, 4, -1, 6]
copy if we want to

modify a mutable print("Original A:", A, "\n")

result = get info(A)

within a function print("Len:", result[@], "Min:", result[1l], "Max:",result[2], "\n")
without affecting
the orginal object print("A now:", A)

Original A: [7, 1, 125, 4, -1, 0]
Len: 6 Min: -1 Max: 125

A now: [-1, 0, 1, 4, 7, 125]

Example: Let's write a function that, given a list of integers, returns the number of elements, the
maximum and minimum.

Functions

def get info(myList):
"""returns len of myList, min and max value
(assumes elements are integers) but it would work with str®""
tmp = myList[:] #copy the input list
tmp.sort()
return len(tmp), tmp[0], tmp[-1] #return type is a tuple

We need to make a A=1[7, 1, 125, 4, -1, O]
copy if we want to

modify a mutable print("Original A:", A, "\n")

result = get_info(A)

within a function print(“"Len:", result[®], "Min:", result[l], "Max:",result[2], "\n")
without affecting
the orginal object print("A now:", A)

Original A: [7, 1, 125, 4, -1, 0]
Len: 6 Min: -1 Max: 125

A now: [7, 1, 125, 4, -1, 0]

Argument passing by keyword and defaults

def print_parameters(a="defaultA", b="defaultB",c="defaultC"):
print("a:",a)
print("b:",b)
print(“c:",c)

print_parameters("param A")
print ("\ n###EHEHEHEEN")
print_parameters(b="PARAMETER B")

We can specify Print ("\n#sss##H#\N")
print _parameters()
default values (that Print("\n###########H#F##H\D")

. print_parameters(c="PARAMETER C", b="PAR B")
can be overridden) P
a: param

and name the b: defaultB
: defaultC
parameters of a & Sl

H FHEBHBABRHHHBRHIH
function... *

a: defaultA
b: PARAMETER B
c: defaultC

FERHHBRAA AR

a: defaultA
b: defaultB
c: defaultC

RARHRHRARARR AR R

a: defaultA
b: PAR B
Cc: PARAMETER C

Functions

Example. Write a function that rounds a float at a precision (i.e. number of decimals) specified in input. If no
precision is specified then the whole number should be returned. Examples:

my_round(1.1717413, 3) = 1.172
my_round(1.1717413, 1) = 1.2
my_round(1.1717413) = 1.1717413

import math

def my round(val, precision = 0):
if precision ==
return val
else:
return round(val * 10** precision)/ 10%*precision

my val = 1.717413

print(my val, " precision 2: ", my round(my val,2))
print(my val, " precision 1: ", my round(my val,l))
print(my val, " precision max: ", my round(my val))
print("")

my val = math.pi

print(my val, " precision 10: ", my round(my val,10))

1.717413 precision 2: 2
1.717413 precision 1:

1.717413 precision max:

157
3 %
1.717413

3.141592653589793 precision 10: 3.1415926536

Let’s create now a list with the square root values of the first 20 integers with 3 digits of precision.

Functions

import math

def my round(val, precision = 0):
if precision == 0:
return val
else:
return round(val * 10** precision)/ 1@**precision

» result = [my round(math.sqrt(x), 3) for x in range(1,21)]

print(result)

[1.0, 1.414, 1.732, 2.0, 2.236, 2.449, 2.646, 2.828, 3.0, 3.162, 3.317, 3.464, 3.606, 3.742, 3.873, 4.0, 4.123, 4.
we can apply 243, 4.359, 4.472]

functions in a list
comprehension...

Let's print only the values of the list result above whose digits sum up to a certain value x. Hint: write another
function! sum is 10: [1.414, 4.123]

Fu nctions sum is 13: [1.732, 2.236, 4.243]

import math

def my round(val, precision = 0):
if precision == 0:
return val
else:
return round(val * 10** precision)/ 1@**precision

#version without list comprehension
def sum of digits noList(num, total):
tmp = str(num)

tot = 0
for d in tmp:
2% d l=micmt
Aljother ex‘ample.-.. tot += int(d)
with and without list if tot == total:
. return True
comprehension else:

return False

#with list comprehension

def sum of digits(num, total):
tmp = [int(x) for x in str(num) if x != "."]

return sum(tmp) == total

result = [my round(math.sqrt(x), 3) for x in range(1,21)]
print("sum is 10:", [x for x in result if sum of digits(x, 10)])
print("sum is 13:",[x for x in result if sum of digits(x, 13)])

sum is 10: [1.414, 4.123]
sumi:is. 13 [1.732, 2.236,. 4:243]

#simple empty placeholders
print("I like {} more than {}.\n".format("python", "java"))

#1ndexed placeholders, note order
print("I like {0} more than {1} or {2}.\n".format("python", "java", "C++"))

String formatting print("I like {2} more than {1} or {0}.\n".format("python", "java", "C++"))

#indexed and named placeholders
print("I like {1} more than {c} or {0}.\n".format("python", "java", c="C++"))

I like python more than java. #with type specification
. . import math
L Thepytinn. sors Alan java ue L. print("The square root of {0} is {1:f}.\n".format(2, math.sqrt(2)))

I like C++ more than java or python.)))
#with type and format specification (NOTE: {.2f})

I like java more than C++ or python. print("The square root of {0} is {1:.2f}.\n".format(2, math.sqrt(2)))

The square root of 2 is 1.414214. #spacing data properly
print("—{:ZS}l{:S}l{:G}" .format("N","sqrt","square"))

The square root of 2 is 1.41. for i in range(0,20):

N |sqrt |square print("{:2d}|{:5.3f}|{:6d}".format(i, math.sqrt(i),i*i))
0/0.000 0

1/1.000 1

2|1.414 4

3]1.732 9

4|2.000 16

512.236 25

6]2.449 36

; gggg gg Format can be used to add values to a string in specific placeholders
9|3.000 81 (normally defined with the syntax {}) or to format values according to
i? 3;?% }32 the user specifications (e.g. number of decimal places for floating point
12|3.464| 144

13|3.606 169 numbers).

14[3.742] 196

15|3.873 225 H

16/2.000| 256 More info) _ _

g 3;23 ggg https://docs.python.org/3/library/string.html#format-string-syntax
19(4.359| 361

File Input/Output

With files you need to perform 3 steps:

Open the file, read/write, close

Result | Built-in function | Meaning

file open(str, [str]) | Get a handle to a file

Result | Method Meaning

str file.read() Read all the file as a single string
list file.readlines() | Read all lines of the file as a list of
of str strings

str file.readline() | Read one line of the file as a string
None file.write(str) | Write one string to the file

None file.close() Close the file (i.e. flushes changes

to disk)

File Input/Output

file handle = open("file name", "file mode")

With files you need to: Read

Open read/write. close 1. content = fh.read() reads the whole file in the content string. Good for small and not
J J

structured files.
2. line = fh.readline() reads the file one line at a time storing it in the string line
3. lines = fh.readlines() reads all the lines of the file storing them as a list lines

4. using the iterator:
Opening mode: “r”, “w”, “a”,”’b”,...

f for line in f:

#process the information

overwrites!

which is the most convenient way for big files.

Write

file handle.write(data to be written)

file handle.close()

fh = open("file samples/textFile.txt", "r") #read-only mode

content = fh.read()

. print("--- Model (the whole file in a string) ---")
File Input/Output e
print("")
print("--- Mode2 (line by line) ---")

with open("file samples/textFile.txt","r") as f:
print("Linel: ", f.readline(), end = "")
print("Line2: ", f.readline(), end = "")

print("")
print("--- Mode3 (all lines as a list) ---")
with open("file samples/textFile.txt","r") as f:

fh.close() print(f.readlines())
print("\n--- File closed ---") 4
prlnt(nn)
print(fh.readline()) print("--- Mode4 (as a stream) ---")
--- File content --- with open("file samples/textFile.txt","r") as f:
Hi everybody,) for line in f:
This is my first file = = - un
and it contains a total of pr1nt(11ne, end =)
four lines!
--- File closed --- --- Model (the whole file in a string) ---

Hi everybody,
""""""""""""""""""""""""""""""""""""""" This is my first file

ValueError Traceback (most recent call last) :
<ipython-input-26-0367c74d60af> in <module> ?gﬂrl{iﬁggfalns a:otel ok
106 print("\n--- File closed ---") \
11 . 4
---> 12 print(fh.readline()) --- Mode2 (line by line) ---
Linel: Hi everybody,
ValueError: I/0 operation on closed file. Line2: This is my first file

--- Mode3 (all lines as a list) ---
['Hi everybody,\n', 'This is my first file\n', 'and it contains a total of\n', 'four lines!']

--- Mode4 (as a stream) ---
Hi everybody,

This is my first file

and it contains a total of
four lines!

File Input/Output

Example: Given the matrix represented as list of lists, M = [[1,2,3], [4,5,6], [7,8,9]] let's write it on a

1 2¢ 3
file my_matrixtxtas 4 5 6
M= [[1,2,3], [4,5,6], [7,8,9]] #Equivalent code (without with clause):
M= [[1,2,3], [4,5,6], [7,8,9]]
with open("fTile_ samples/my _matrix.txt", "w") as f:
for line in M: f = open("file samples/my matrix.txt", "w")
str_line = [str(x) for x in line] #to make this "joinable for line in M:
f.wr;te{' '.join(str_line)) str line = [str(x) for x in line]
f.write("\n") f.write(" ".join(str line))
f.write("\n")
0 need to put the close because we used with f.close()

more info in the biancol@bludell:~/work/courses/QCBsciprolab2020$ cat file samples/my matrix.txt
Practical6 notes... [N

http://gcbsciprolab2020.readthedocs.io/en/latest/practicale.html

Exercises

1. Implement a function that takes in input a string representing a DNA sequence and computes
its reverse-complement. Take care to reverse complement any character other than
(AT,C,G,at,c.g) to N. The function should preserve the case of each letter (i.e. A becomes T, but
a becomes t). For simplicity all bases that do not represent nucleotides are converted to a capital
N. Hint: create a dictionary revDict with bases as keys and their complements as values. Ex.
revDict = {“A” : “T", “a": “t", ..}

1. Apply the function to the DNA sequence “ATTACATATCATACTATCGCNTTCTAAATA"
2. Apply the function to the DNA sequence “acaTTACAtagataATACTaccataGCNTTCTAAATA”
3. Apply the function to the DNA sequence “TTTTACCKKKAKTUUUITTTARRRRRAIUTYYA"

4. Check that the reverse complement of the reverse complement of the sequence in 1. is
exactly as the original sequence.

Show/Hide Solution

2. Write the following python functions and test them with some parameters of your choice:

‘ 1. getDivisors: the function has a positive integer as parameter and returns a list of all the
positive divisors of the integer in input (excluding the number itself). Example:
getDivisors(6) --> [1,2,3]

2. checkSum: the function has a list and an integer as parameters and returns True if the sum of

all elements in the list equals the integer, False otherwise. Example:
checkSum([1,2,3], 6) --> True , checkSum([1,2,3],1) --> False .

3. checkPerfect: the function gets an integer as parameter and returns True if the integer is a
perfect number, False otherwise. A number is perfect if all its divisors (excluding itself) sum
to its value. Example: checkPerfect(6) --> True because 1+2+3 = 6. Hint: use the functions
implemented before.

Use the three implemented functions to write a fourth function:

getFirstNperfects: the function gets an integer N as parameter and returns a dictionary with the first
N perfect numbers. The key of the dictionary is the perfect number, while the value of the
dictionary is the list of its divisors. Example: getFirstNperfects(1) --> {6 : [1,2,3]}

Get and print the first 4 perfect numbers and finally test if 33550336 is a perfect number.

WARNING: do not try to find more than 4 perfect numbers as it might take a while!!!

