

https://doodle.com/poll/2cs4gs5cztvdfpn5

Pandas (panel-data) is a very
efficient library to deal with numerical
tables and time series

https://pandas.pydata.org/

https://pandas.pydata.org/

Series are 1-dimensional structures
(like lists) containing data. Series are
characterized by two types of
information: the values and the index
(a list of labels associated to the
data). A bit like list and a bit like
dictionary!

Series are 1-dimensional structures
(like lists) containing data. Series are
characterized by two types of
information: the values and the index
(a list of labels associated to the
data). A bit like list and a bit like
dictionary!

If not specified, the index is added by
default

Data in a series can be
accessed by using the
label (i.e. the index) as in
a dictionary or through its
position as in a list.
Slicing is also allowed
both by position and
index.

In the latter case,
Series[S:E] with S and E
indexes, both S and E
are included.

Data in a series can be
accessed by using the
label (i.e. the index) as in
a dictionary or through its
position as in a list.
Slicing is also allowed
both by position and
index.

In the latter case,
Series[S:E] with S and E
labels, both S and E are
included.

Important operations on series:

Operator broadcasting

Operations can automatically be broadcast
to the entire Series. This is a quite cool
feature and saves us from looping
through the elements of the Series.

Example: Given a list of 10 integers, we want
to divide them by 2.

Without pandas:

Important operations on series:

Operator broadcasting

Operations can automatically be broadcast
to the entire Series. This is a quite cool
feature and saves us from looping
through the elements of the Series.

Example: Given a list of 10 integers, we want
to divide them by 2.

With pandas (operator broadcasting):

Important operations on series:

Operator broadcasting

Filtering

We can also apply boolean operators to obtain
only the sub-Series with all the values
satisfying a specific condition. This allows us to
filter the Series.

series of True and False
where condition is/is not
met

Important operations on series:

Operator broadcasting

Filtering

Computing stats

Important operations on series:

Operator broadcasting

Filtering

Computing stats

see notes for the complete
results and other features
like Series.fillna(values)

It is quite easy to plot data in Series
and DataFrames thanks to matplotlib

https://matplotlib.org/3.3.2/api/pyplot_summary.html

2D analogous of Series.
They have an index and several
columns.

Data can be dishomogeneous.

Most of the the things seen for Series
apply to DataFrames

We can load external files, extract
info and apply operators,
broadcasting and filtering...

import pandas as pd

orders = pd.read_csv("file_samples/sampledata_orders.csv", sep=",",

index_col =0, header=0)

print("The Order Quantity column (top 5)")

print(orders["Order Quantity"].head(5))

print("")

print("The Sales column (top 10)")

print(orders.Sales.head(10))

print("")

print("The row with ID:50")

r50 = orders.loc[50]

print(r50)

print("")

print("The third row:")

print(orders.iloc[3])

print("The Order Quantity, Sales, Discount and Profit of the 2nd,

4th, 6th and 8th row:")

print(orders[1:8:2][["Order Quantity", "Sales","Discount", "Profit"]])

print("The Order Quantity, Sales, Discount and Profit of orders with

discount > 10%:")

print(orders[orders["Discount"] > 0.1][["Order Quantity", "Sales",

"Discount", "Profit"]])

see notes for results

Load from file

1. how = inner : non-matching entries are

discarded;

2. how = left : ids are taken from the first

DataFrame;

3. how = right : ids are taken from the second

DataFrame;

4. how = outer : ids from both are retained.

DFs1 DFs2

The columns we merge on do not
necessarily need to be the same, we
can specify a correspondence between
the row of the first dataframe (the one
on the left) and the second dataframe
(the one on the right) specifying which
columns must have the same values to
perform the merge.

This can be done by using the
parameters right_on = column_name
and left_on = column_name

The split-apply-aggregate
paradigm

The split-apply-aggregate
paradigm

The split-apply-aggregate
paradigm

Questions:
How many Product categories?
Total sales and profits per category?
What is the most profitable category?

We are going to need some libraries

